
Single-Mode Open Beam Butterfly Package with Optical Isolator

Innovative Photonic Solutions' proprietary Single-Mode Wavelength-Stabilized laser diode with an optical isolator features high output power with narrow spectral bandwidth and a diffraction limited free space output beam. Designed to replace expensive DFB, DBR, fiber, and external cavity lasers, the single-mode spectrum stabilized laser featuring an optical isolator offers superior wavelength stability over time, temperature, and vibration, and is manufactured to meet the most demanding wavelength requirements. The single-mode packaged product line comes standard with a circularized output beam, internal photodiode, thermistor and ESD protection. Lasing wavelength can be accurately specified and repeatedly manufactured to within +/-0.1 nm upon request.

Applications

This 14-pin open beam butterfly package is designed for OEM integration and is ideal for:

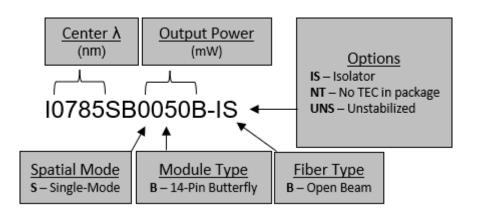
- High Resolution Raman Spectroscopy Confocal Microscopy
 - Raman Imaging
 - Portable Raman
 - Process Raman
- Direct-Diode Frequency Doubling
- Fiber Laser Seeding
- Metrology & Interferometry
- Remote Sensing

Key Features

- High-Power Single Frequency Output (SLM)
- Narrow Spectral Linewidth
- Stabilized Output Spectrum (< 0.007 nm/°C)
- Excellent Beam Quality (M², 1/e²) < 1.2
- Beam exit angle < 1°

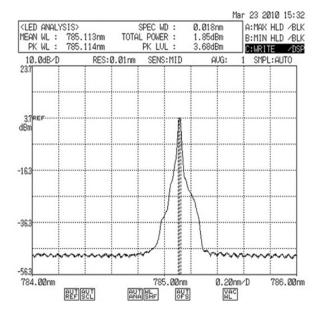
Standard Wavelengths

780nm 808nm 976nm 783nm 830nm 1030nm 785nm 852nm 1053nm 1064nm


Specifications

Wavelength Tolerance	+/- 0.5 nm
Spectral Linewidth	~ 100 kHz* instantaneous
Wavelength Stability Range	15°C-45°C
SMSR	35-45 dB
Power Stability	1% typical
Polarization Extinction (PER)	>17dB, 20dB Typical
Spatial Profile	TEM00
Beam Exit Angle	<1°
Beam Quality (M², 1/e²)	<1.2
Beam Ellipticity	< 1.5:1
Beam Divergence	~2 mrad

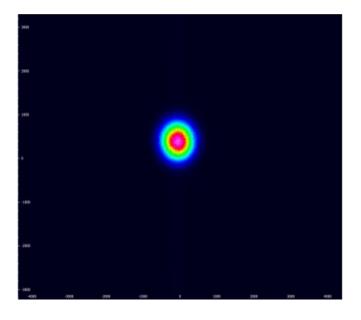
λ (nm)	Output Power (mW)	Base Part Number	Max Current, Voltage
780	50	I0780SB0050B-IS	200mA, 2.5V
783	50	I0783SB0050B-IS	200mA, 2.5V
785	50	I0785SB0050B-IS	200mA, 2.5V
808	50	I0808SB0050B-IS	400mA, 2.3V
852	40	I0852SB0040B-IS	500mA, 2.3V
1030	100	I1030SB0100B	750mA, 2.2V
1053	100	I1053SB0100B	750mA, 2.2V
1064	100	I1064.XSB0100B	750mA, 2.2V


Part Schema

^{*}Requires driver electronics with very low noise analog laser driver along with a design for dual TECs for improved temperature control. Refer to the <u>Linewidth White Paper</u> on our website for further details.

Selected Data

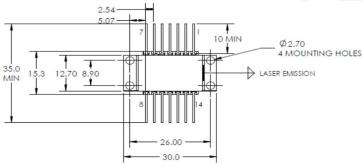
TEC Current Limit	3.2 A
TEC Voltage Limit	5.8 V
Photodiode Current	30 μ A
Integral Thermistor	Betatherm 10K3CG3

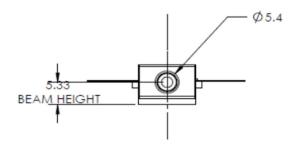


Typical 785nm SS Laser Spectrum

Custom Capability

- Custom wavelengths available upon request.
- External TEC (e.g. No TEC inside of package optional).


Typical 785nm Beam Quality


Electrical Specs

Pin 1	TEC+
Pin 2	Thermistor 10kOhm @25°C
Pin 3	PD Anode
Pin 4	PD Cathode
Pin 5	Thermistor
Pin 6-8	NC
Pin 9	Laser Cathode (-)
Pin 10	Laser Anode (+)
Pin 11	Laser Cathode (-)
Pin 12	NC
Pin 13	Case Ground
Pin 14	TEC -

Mechanical Drawings

9.40 5.8 1.0 MAX

OEM Laser Product: This laser module is designed for use as a component (or replacement) part and is thereby exempt from 21 CFR1040.10 and 1040.11 provisions.

Operational Notes

- 1. 14-pin BF should be mounted on a heat sink with a thermal compound (thermal grease).
- 2. Take care not to over-tighten screws when mounting. This can bend the BF package causing damage and hindering performance and is not covered under warranty.
- 3. Laser and TEC driver circuitry should be configured in a manner to prevent power /current / voltage surges and spikes.
- 4. IPS recommends not grounding anode and cathode as this can cause ground loops.
- 5. Laser and TEC driver circuitry should be configured in a manner to prevent power /current / voltage surges and spikes.
- 6. Do not retro-reflect beam! This can cause Catastrophic Optical Damage (COD) and is not covered under warranty.
- 7. Laser will operate in single frequency mode at set-points between 15 to 45°C, however, optimal operating set point must be determined for each laser diode to avoid mode-hopping (see note 8).
- 8. To determine optimal operating point, plot wavelength vs temperature and wavelength vs. current to determine where mode-hop locations are. Set operating temperature and current halfway between mode-hops. This will ensure the most stable operation (See Mode Hop Whitepaper for more details).

Phone: (732) 230-1601

sales@ipslasers.com www.ipslasers.com

